Logaritma



Logaritma (Yunanca: λόγος (logos) = anlayış, ἀριθμός (aritmos) = sayı), 17. yüzyılın başında hesapları hızlandırmak için yapılan bir buluş. 300 yıldan daha uzun bir zaman, temel bir hesap metodu olmuştur. 19. yüzyılda masa hesap makinalarının doğuşu ve yirminci yüzyılda elektronik hesap makinalarının ortaya çıkışı, logaritmaya olan ihtiyacı azaltmıştır. Ancak logaritmik fonksiyonların teorik ve uygulamalı matematikte özel bir yeri vardır.

Logaritma, birbirinden habersiz çalışan iki kişi tarafından keşfedilmiştir. Bunlar; 1614'te İskoçyalı John Napier ve 1620'de İsviçreli Joost Bürgi'dir.

Logaritma üzerinde önemli çalışmaları olan bir Türk bilgini de Gelenbevi İsmail Efendidir. Kendisi büyük matematikçi olup, mantıkla da uğraşmıştır. 1730-1790 yıllarında yaşayan bu büyük alimin Logaritma Risalesi isimli çok açık, anlaşılır yazılmış bir eseri mevcuttur.

Logaritmayı açıklamak için 2·2·2= 8 ifadesine bakalım. Bu 2³ = 8 olarak kısaca yazılabilir. Bu örnekte 3, 8'in 2 tabanına göre logaritması denir. Başka bir örnek, 2·2·2·2 = 16 ve 24= 16 yazılırsa, burada 4, 16'nın 2 tabanına göre logaritmasıdır. Genel olarak bx= N ifadesinde N'nin b tabanına göre logaritması, x'tir. Her ne kadar her pozitif sayı taban olarak kullanılırsa da genel olarak logaritma 10 ve e (yaklaşık, 2,718281828) tabanına göre hesaplanır.

Bayağı veya adi logaritma

Eğer logaritma 10 tabanına göre olursa, bu logaritma bayağı (adi) logaritma veya keşfeden Henry Briggs'e izafeten Briggs logaritma denir. Adi logaritma; 102 = 100, 103 = 1000, 104 = 10000 eşitliklerine dayanır. bx = N genel denklemi 10x = N şekline, veya log10N = x haline gelir. Genelde buradaki 10 sayısı yazılmaz, sadece log N yazılır. Mesela; log 150 = 2,1761'dir. Buradaki 150 sayısı 100 ile 1000 yani 10² ile 10³ arasında olduğundan logaritması 2 ile 3 arasındadır. Bu maksatla özel logaritma tabloları hazırlanmıştır.

Logaritma kullanılarak çarpmalar, toplamaya çevrilir. Mesela; 150 ile 254'ü çarpmak için, iki sayının logaritmaları tablodan bulunur ve toplanır. Sonra bu logaritmaya karşı gelen sayı tablodan aranır ki, bulunan sonuç, sözkonusu iki sayının çarpımından ibarettir. 150 ve 254'ün logaritmaları sıra ile 2,17661 ve 2,4048'dir. Toplam 4,5809 olur. Logaritması bu olan sayı aranırsa, 38100 bulunur.

Ancak logaritmanın tam kısmı, mesela 150'nin logaritması olan 2,1761'de 2, tablodan elde edilmez. Tablodan bunu takip eden sayılar okunur. 150 sayısının 100 = 10² ile 1000 = 10³ arasında olduğu düşünülerek tamsayı kısmının 2 olduğu anlaşılır. Çarpma, logaritmaların toplam yapılarak elde edildiği gibi, bölme de, logaritmalar çıkarılarak elde edilir.

Tabii logaritma

Eğer taban olarak yaklaşık 2,718281828 olan e sayısı alınırsa, bu logaritma tabii logaritma veya keşfeden John Napier'e izafeten Napier logaritması olarak da isimlendirilir. logeN yerine ln N ifadesi kullanılır. Mesela, ln 2= 0,6932'dir. Tabii logaritma genel olarak, ilmi kanunların ifadesinde sık sık ortaya çıkar.

Adi ve tabii logaritmalar birbirleri ile alakalı olup, tabii logaritma, adi logaritmaya 0,4343 sayısı ile çarparak çevrilebilir.

Adi ve tabii logaritmaların dışında herhangi pozitif bir reel sayı tabanına göre de logaritma kullanılır. Ancak negatif sayıların hiçbir tabana göre logaritmasının olmayacağı açıktır.